必威一betway088-必威betway中文版

必威一betway088教师简介——欧乾忠

发布时间:2019-03-01 浏览次数:3818

欧乾忠,男,1973年生,博士,教授。

  

  

 

椭圆偏微分方程

 

  

 

数学分析

 

  

 

(1) 椭圆偏微分方程解的水平集的凸性, 国家自然科学基金地区基金项目(编号:11061013),24万,2011.1-2013.12

(2) 椭圆偏微分方程解的水平集的几何性态,广西自然科学基金面上项目(编号:2010GXNSFA013123),4万,2010.4-2013.3

(3) 椭圆偏微分方程解的几何性态,广西自然科学基金面上项目(编号:2014GXNSFAA118028),5万,2014.6.1-2017.5.31

人才计划项目:

(1)椭圆偏微分方程研究, 2012年“广西高等学校优秀人才资助计划”,1万。

 

  

 

[1] Rongli Huang, Qianzhong Ou, On the Second Boundary Value Problem for a Class of  Fully  Nonlinear Equations,Journal Geometry Analisys, DOI 10.1007/s12220-017-9774-7, Published online: 04 March 2017.

[2] Qianzhong Ou, A Note on Nonexistence of Conformal Hessian InequalitiesAdvances in Mathematics(China), Vol. 46, No. 1, Jan., 2017154-158.

[3] Qianzhong Ou, Lu Xu, Liouville Type Results of Curvature Operators of Fuchsian Convex Surfaces, Journal of Mathematical Analysis and Applications. 434 (2016), 1435–1441.

[4] Qianzhong Ou, Nonexistence Results for a Fully Nonlinear Evolution Inequalitty, Electronic Research Announcements in Mathematical Sciences. 23(2016), 19-24.

[5] Chuanqiang Chen, Fei Han and Qianzhong Ou, The Interior C^2 Estimate for the MONGE–AMPÈRE Equation in Dimension n = 2, Analysis and PDE. 9 (2016), No.6,1419–1432.

[6] Qianzhong Ou, Singularities and Liouville Theorems for Some Special Conformal Hessian Equations, Pacific Journal of Mathematics, 266(2013),No.1,117-128.

[7]  J. Jost, Xi-Nan Ma & Qianzhong Ou, Curvature estimates in dimensions 2 and 3 for the level sets of p-harmonic functions in convex rings, Trans. Amer. Math. Soc., 364(2012), No.9, 46054627.

[8] Qianzhong Ou, Nonexistence results for hessian inequalityMethods and Applications of Analysis,17(2010),No.2,213-224.

[9] Changqing Hu, Xi-Nan Ma & Qianzhong Ou, A Constant Rank Theorem for Level Sets of Immersed Hypersurfces in  with Prescribed Mean Curvature, Pacific Journal of Math., 245 (2010),No.2, 255-271.

[10] Xi-Nan Ma , Qianzhong Ou & Wei Zhang, Gaussian curvature estimates for the convex level sets of p-harmonic functions, Comm. Pure and Appl. Math., Vol.LXIII (2010), 935-971.

Baidu
sogou