必威一betway088教师简介——钱凌志
发布时间:2021-03-15 浏览次数:3377
钱凌志
博士、教授、硕士生导师(学术型、专业型)、广西高等学校
中青年骨干教师,广西师范大学B类漓江学者。
Email:qianlz@mailbox.gxnu.edu.cn
简介:
钱凌志,男,教授,博士。新疆大学数学学科博士后、广西高等学校千名中青年骨干教师培育对象、广西师范大学B类漓江学者。现为国际SCI期刊《Engineering Analysis with Boundary Elements》审稿人。
主要从事微分方程数值解的理论与计算、计算流体力学、两相不可压缩流体耦合问题、虚拟元算法等研究工作。
主持国家自然科学基金项目、广西自然科学基金面上项目、江苏省大规模复杂系统数值模拟重点实验室项目、自治区优秀博士后基金人才项目等课题7项,先后参与国家自然科学基金等课题5项。并在《Journal of Scientific Computing》、 《Applied Mathematical Modelling》、《International Journal of Heat and Mass Transfer》、《Numerical Methods for Partial Differential Equations》等一流期刊发表SCI论文10余篇,研究成果获自治区科技进步二等奖。
(1) Lingzhi Qian, Xinlong Feng, Yinnian He,The characteristic finite difference streamline diffusion method for convection-dominated diffusion problems, Applied Mathematical Modelling, 2012.2, 36: 561~572.
(2) Lingzhi Qian, Huiping Cai, Rui Guo, Xinlong Feng, The characteristic variational multiscale method for convection-dominated convection-diffusion-reaction problems , International Journal of Heat and Mass Transfer, 2014.5, 72: 461~469.
(3) Lingzhi Qian, Huiping Cai, Xinlong Feng; Dongwei Gui, The characteristic subgrid artificial viscosity stabilized finite element method for the nonstationary Navier-Stokes equations , International Communications in Heat and Mass Transfer, 2015.7, 65: 37~46.
(4) Lingzhi Qian, Jinru Chen, Xinlong Feng, Local projection stabilized and characteristic decoupled scheme for the fluid-fluid interaction problems , Numerical Methods for Partial Differential Equations, 2017.5, 33(3): 704~723.
(5) Lingzhi Qian,Jinru Chen, Xinlong Feng, The stabilized lower-order and equal-order finite element methods for the hydrostatic Stokes problems, International Communications in Heat and Mass Transfer,111 (2020) 104391.
(6) Lingzhi Qian, Xinlong Feng, Yinnian He,Crank–Nicolson Leap-Frog Time Stepping Decoupled Schemefor the Fluid–Fluid Interaction Problems, Journal of Scientific Computing, 2020, 84(1).
(7)Yuanyang Qiao*, Lingzhi Qian*, Xinlong Feng, Fast numerical approximation for the space-fractional semilinear parabolic equations on surfaces, Engineering with Computers,2021, https://doi.org/10.1007/s00366-021-01357-z.