学术报告:Meta analysis for estimating incubation period of COVID-19
发布时间:2021-10-07 浏览次数:211
报告人:周勇
报告时间:2021年10月8日14:10
报告地点:雁山校区图书馆204
报告题目:Meta analysis for estimating incubation period of COVID-19
报告人简介:周勇,教授,华东师范大学统计交叉科学研究院院长,国家杰出青年科学基金获得者,教育部长江学者特聘教授,中国科学院百人计划入选者,“新世纪百千万人才工程”国家级人选。现任教育部应用统计专业硕士教学指导委员会委员、中国统计学会副会长,中国优选法统筹法与经济数学研究会(双法学会)副理事长,管理科学与工程学会常务理事,管理科学与工程学会金融计量与风险管理分会理事长,中国优选法统筹法与经济数学研究会数据科学分会理事长。曾任国务院学位委员会第七届统计学科评议组成员。担任包括《中国管理科学》、《系统工程理论与实践》和《Journal of Business and Economic Statistics》、《Canadian Journal of Statistics》等国内外多个知名学术期刊的副主编和编委。国家自然科学基金委管理学部会评专家,曾任973重大基础研究计划评委和通讯评委。周勇教授主要从事大数据分析与建模、生存分析、金融计量、风险管理、计量经济学。
报告摘要:Since the outbreak of the new coronavirus disease (COVID-19) in December 2019, a large number of scientific studies and data analysis reports have been published in the international journal of medicine and statistics. Taking the estimation of the incubation period as an example, we propose a low-cost method to integrate multiple research results and available data. By using empirical likelihood method, we can effectively incorporate summarised information even if it may be derived from a misspecified model. Considering the possible uncertainty in summarised information, we augment a logarithm of the normal density in the log empirical likelihood. We show that the augmented log-empirical likelihood can produce consistent estimates for the underlying parameters. Moreover, the Wilks' theorem holds to be true. We illustrate our methodology by analyzing a COVID-19 incubation period data set retrieved from Zhejiang Province and summarised information from a similar study in ShenZheng, China.