学术报告:Overdetermined problem for minimal surface equation
发布时间:2021-11-15 浏览次数:154
学术报告:Overdetermined problem for minimal surface equation
报告人:崔庆
报告时间:2021年11月16日下午3:00-4:00
报告地点:腾讯会议:689724789
报告题目:Overdetermined problem for minimal surface equation
报告人简介:崔庆,西南交通大学,副教授。本科毕业于华中师范大学,2010年博士毕业于武汉大学,主要从事子流形几何研究。具体研究兴趣为:常平均曲率曲面,第二基本形式模长夹击定理,特征值估计,四维Einstein流形和子流形等问题。主持过一项国家自然科学基金青年基金,参与国家自然科学基金若干项。已在Calc. Var. Partial Differential Equations, J. Differential Equations等国际数学期刊上发表论文9篇。
报告摘要:In this talk, we will first summarize some developments of overdetermined problems for Poisson equations. Then we will give a rigidity result of overdetermined problem for minimal surface equation. More precisely, we will show that an overdetermined problem over a domain $\Omega \subset R^2$ with connected boundary has a $C^2$ solution if and only if $\Omega$ is the complement of a round disk or a half plane. Equivalently, we show that a minimal graph defined over a domain $\Omega \subset R^2$ with connected boundary and makes a constant angle with $\Omega$ along the boundary must be a part of a catenoid or a half plane.