必威一betway088-必威betway中文版

学术报告:Time-asymptotic stability of composite wave of viscous shock and rarefaction for barotropic Navier-Stokes equations

发布时间:2021-11-20 浏览次数:426

报告人:王益(中国科学院数学与系统科学研究院)

报告时间:11月22日晚上19:00--20:00

地点:线上 (腾讯会议ID:574 153 139)

报告题目:Time-asymptotic stability of composite wave of viscous shock and rarefaction for barotropic Navier-Stokes equations

报告摘要: We talk about our recent result on the time-asymptotic stability of composite waves consisting of the superposition of a viscous shock and a rarefaction for the one-dimensional compressible isentropic Navier-Stokes equation. Our result solves a long-standing problem first mentioned in 1986 by Matsumura and Nishihara in [Japan J. Appl. Math., 1986]. The same authors introduced it officially as an open problem in 1992 in [Comm. Math. Phys., 1992] and it was again described as a very challenging open problem in 2018 in the survey paper [A. Matsumura, Handbook of mathematical analysis in mechanics of viscous fluids, Springer, 2018]. The main difficulty is due to the incompatibility of the standard anti-derivative method, used to study the stability of viscous shocks, and the energy method used for the stability of rarefactions. Instead of the anti-derivative method, our proof uses the $a$-contraction with the time-dependent shifts to control the compressibility of viscous shocks in the original perturbation framework for the stability of rarefactions. This method is energy based, and can seamlessly handle the superposition of waves of different kinds.

报告人简介:王益,中国科学院数学与系统科学研究院研究员、博士生导师,中国科学院大学教授,主要从事非线性偏微分方程的研究工作,研究兴趣为流体力学方程组的相关数学理论,包括Boltzmann方程的流体动力学极限、流体力学方程组的适定性理论(解的存在唯一性、稳定性和粘性消失极限)等,主要学术论文发表于Arch. Ration. Mech. Anal., Comm. Math. Phys.和SIAM J. Math. Anal.等国际重要刊物上。曾获国家自然科学基金委员会优秀青年基金的资助,入选第二批国家万人计划“青年拔尖人才”。 

欢迎各位老师和同学参加!



必威一betway088

                                   2021年11月20日


Baidu
sogou