必威一betway088-必威betway中文版

学术报告:Quasi-clean rings and strongly quasi-clean rings

发布时间:2021-12-03 浏览次数:175

报告人:唐高华(北部湾大学)

报告时间:12月7日晚上19:00--20:00

地点:线上 (腾讯会议ID:277 844 039)

报告题目:Quasi-clean rings and strongly quasi-clean rings

报告摘要: An element a of a ring R is called a quasi-idempotent if a^2=ka for some central unit k of R, or equivalently, a=ke , where k is a central unit and e is an idempotent of R. A ring R is called a quasi-Boolean ring if every element of R is quasi-idempotent. A ring R is called (strongly) quasi-clean if each of its elements is a sum of a quasi-idempotent and a unit (that commute). These rings are shown to be a natural generalization of the clean rings and strongly clean rings. We prove that an indecomposable commutative semilocal ring is quasi-clean if and only if it is local or R has no image isomorphic to Z_2; For an indecomposable commutative semilocal ring R with at least two maximal ideals, Mn (R)(n ≥ 2) is strongly quasi-clean if and only if Mn(R) is quasi-clean if and only if min{|R/m|, m is a maximal ideal of R} > n+1.

报告人简介:唐高华,北部湾大学理学院教授,博士生导师,广西十百千人才,全国优秀教师,八桂名师,广西高校教学名师,教育部高等学校数学类专业教学指导委员会委员,广西高校数学类专业教学指导委员会主任委员,广西数学会理事长。主要从事交换代数、同调代数、环的代数结构与图结构等的研究。定义了交换环的弱Krull维数,证明了弱Krull维数为2的广义伞环上Bass-Quillen猜想成立。建立了环上形式矩阵环理论,其中的一类被称之为唐-周环。在环的内部刻画、环的同调理论、环的代数结构与图结构、环上形式矩阵环等的研究中取得了系列成果,发表论文150多篇。

欢迎各位老师和同学参加!



必威一betway088

                                   2021年12月5日    


Baidu
sogou