必威一betway088-必威betway中文版

周恒宇副研究员学术报告:The Dirichlet problem of prescribed mean curvature equations in Riemannian manifolds

发布时间:2022-06-23 浏览次数:119

报告人:周恒宇副研究员,重庆大学

报告题目:The Dirichlet problem of prescribed mean curvature equations in Riemannian manifolds

报告时间:6月30日(星期四)10:50-11:50

报告地点:育才校区数学楼304  腾讯会议(ID: 266-553-623)

报告摘要:In this talk we discuss some recent results on the Dirichlet problem of prescribed mean curvature equations in Riemannian manifolds. Our motivations come from the Plateau problem of prescribed mean curvature equations and the construction of Jang graphs in the Shoen-Yau's proof on the positive mass theorem. We relate the solvability of these Dirichlet problems with a toplogical condition (NCf-condition) from the prescribed mean curvature functions. A key ingredient of our proof is a curvature estimate of (Λ,r)-perimeter minimizer from Simon's idea. 

报告人简介:周恒宇,重庆大学副研究员。2015年毕业于纽约城市大学,先后在南京大学,中山大学做博士后。研究方向是几何分析。目前的研究兴趣是: 预定平均曲率的Plateau问题以及相关的几何测度论问题。


Baidu
sogou