必威一betway088-必威betway中文版

李常品教授学术报告:Discrete formulae for Caputo-Hadamard fractional derivatives and their applications in large time integration

发布时间:2022-07-15 浏览次数:215

报告人:李常品(上海大学)

报告时间:2022年7月18日上午9:00--10:00

报告地点:线上 (腾讯会议ID:831 993 958)

报告题目:Discrete formulae for Caputo-Hadamard fractional derivatives and their applications in large time integration

报告摘要: In this talk, three kinds of discrete formulas are proposed for approximating the Caputo–Hadamard fractional derivatives, which are called L1-2 formula, L2-1_{\sigma} formula, and H2N2 formula, respectively. Among them, the numerical formulas L1-2 and L2-1_{\sigma} are for order \alpha\in (0, 1) with (3−\alpha)-th order convergence, and H2N2 formula is for order \alpha\in (1, 2) with (3 − \alpha)-th order convergence too, where the theoretical convergence order has been verified by the illustrative examples. Finally, these three new formulas are applied to large time integration of fractional differential systems.

报告人简介: 上海大学数学系教授、博士生导师、伟长学者、FIMA (Fellow of the Institute of Mathematics and its Applications, UK)。2021年获上海大学王宽诚育才奖,2017年和2010年获上海市自然科学奖,2016年入选上海市优秀博士学位论文指导教师,2012年获分数阶微积分领域的黎曼-刘维尔理论文章奖,2011年获宝钢优秀教师奖。主要研究方向为分数阶偏微分方程数值解、分岔混沌的应用理论和计算。在SIAM和Chapman and Hall/CRC出版专著各1部,在World Scientific编辑专著1部;发表SCI论文140余篇。主持国家自然科学基金、上海市教委科研创新重点基金等科研项目10余项,主持上海市教委本科重点课程建设等教改项目4项。是德国德古意特出版社系列丛书《Fractional Calculus in Applied Sciences and Engineering》的创始主编,是Appl. Numer. Math., Chaos, Fract. Calc. Appl. Anal., J. Nonlinear Sci., Math Computer Simulation等杂志副主编或编委。

                                   


Baidu
sogou