必威一betway088-必威betway中文版

袁伟副教授学术报告:Conformally variational Riemannian invariants and their associated polydifferential operators

发布时间:2022-10-09 浏览次数:133

报告人:袁伟

报告时间:2022年10月14日上午9:00-10:00

报告地点:腾讯会议:609 454 900

报告题目:Conformally variational Riemannian invariants and their associated polydifferential operators

报告人简介:袁伟博士,中山大学副教授。2008年本科毕业于南开大学,2010年于中国科学技术大学取得理学硕士学位后赴加州大学圣克鲁斯分校(UC Santa Cruz)学习并于2015年取得理学博士学位。主要研究方向为几何分析和广义相对论。此前曾赴法国巴黎第六大学/庞加莱研究所(IHP)、奥地利维也纳大学/薛定谔研究所(ESI)、韩国高等研究院(KIAS)等多地进行学术访问。目前已在Mathematische Annalen, Transactions of AMS, Advances in Mathematics, Calculus of Variations and PDE等学术期刊上发表研究论文十余篇。主要包括Brown-York型质量、数量曲率的体积比较定理、特征值估计等的研究,以及同合作者加州大学圣克鲁斯分校的庆杰教授对真空静态时空的研究、同美国威奇塔州立大学的林悦如教授以及宾夕法尼亚州立大学的Jeffery S. Case教授有关Q-曲率及一般黎曼不变量形变中的一些几何分析问题等多个方面的研究工作。

报告摘要:Conformally variational Riemannian invariant (CVI) is a collection of many fundamental scalar-type curvatures which has many good properties in both conformal and Riemannian geometry. As the most popular examples of CVI, scalar curvature and Q-curvature has been studied extensively in the past decades and these researches still inspire many new works so far. In this talk, I will give a brief introduction about our working frame about CVI and present some of the interesting results especially focusing on our recent work about their associated polydifferential operators. These series of works are joint with Jefferey Case and Yueh-Ju Lin.

 


Baidu
sogou