必威一betway088教师简介——丁恒飞
发布时间:2022-10-18 浏览次数:1670
丁恒飞
博士、教授、硕士研究生导师(学术型),广西师范大学A类漓江学者,广西数学学会常务理事。
Email:dinghf05@163.com
简介:
丁恒飞,男,博士、教授、硕士研究生导师(学术型),广西师范大学A类漓江学者,广西数学学会常务理事。曾为省级重点学科(数学)带头人、省级教学团队(高等数学)负责人、甘肃省“飞天青年学者”、甘肃省普通高等学校“青年教师成才奖”获得者、甘肃省新时代高等院校“党建优秀教师党支部书记”双带头人、甘肃省“陇原人才服务卡”高层次人才、甘肃省科技厅专家库专家、河南省科技奖励评审专家库专家、
天水市“拔尖领军人才”、天水市“第一层次领军人才”、天水市“园丁奖”优秀教师、天水“最美科技工作者”、天水师范学院“青蓝”人才、“教书育人”先进个人、“师德标兵”、“优秀共产党员”和“优秀党务工作者”等。
目前主要从事整数和分数阶微分方程的建模、分数阶导数和分数阶微分方程的高阶数值算法以及应用研究。在Journal of Computational Physics和Journal of Scientific Computing等国际期刊上发表学术论文40 余篇,Google Scholar引用1000 余次,H指数为17。主持国家自然科学基金项目2 项、省自然科学基金项目2项。现任SCI期刊《Mathematics and Computers in Simulation》和《中国理论数学前沿》学术编委。
分数阶微分方程建模,分数阶导数及其分数阶微分方程的高阶快速算法研究
1. 本科生:《数学分析》、《计算方法》、《偏微分方程数值解》、《概率论与数理统计》、《数值分析》
2. 研究生:《数值分析及Matlab》
1. 国家自然科学基金项目(主持)
[2] No.11961057、分数阶导数的基于新的生成函数方法的高阶数值逼近及其应用研究、2020/01-2023/12、40万元、 在研
[1] No.11561060、反常扩散方程的高阶数值算法及其在天水地下水质研究中的应用、2016/01-2019/12、31万元、已结题
2. 省级自然科学基金项目(主持)
[1] No.17JR5RE009、黄河兰州段泥沙输运的分数阶动力学方程建模及其高阶算法研究、2017/08-2019/08、4万元、 已结题
[2] No. 22JR5RE197、复杂介质中污染物扩散与运移规律的两个基本数学问题研究、2022/08-2024/08、6万元、 在研
1. 学术论文(第一作者)
[20] H.F. Ding, The construction of an optimal fourth-order fractional compact-type numerical differential formula of the Riesz derivative and its application, Commun. Nonlinear Sci. 123 (2023), 107272, 34pp. (SCI二区Top期刊)
[19] H.F. Ding, C.P. Li, Numerical analysis of the high-order scheme of the damped nonlinear space fraction Schrödinger equation, Appl. Math. Lett. 141 (2023), 108621, 7pp. (SCI二区期刊)
[18] H.F. Ding, C.P. Li, High-order numerical algorithm and error analysis for the two-dimensional nonlinear spatial fractional complex Ginzburg–Landau equation, Commun. Nonlinear Sci. 120 (2023), 107160, 40pp. (SCI二区Top期刊)
[17] H.F. Ding, J.H. Tian, Structure preserving fourth-order difference scheme for the nonlinear spatial fractional Schrödinger equation in two dimensions, Math. Comput. Simulat. 205 (2023), 1–18. (SCI三区期刊)
[16] H.F. Ding, Q. Yi, The construction of higher-order numerical approximation formula for Riesz derivative and its application to nonlinear fractional differential equations (I), Commun. Nonlinear Sci. 110 (2022), 106394, 32pp. (SCI二区Top期刊)
[15] H.F. Ding, The development of higher-order numerical differential formulas of Caputo derivative and their applications (I). Comput. Math. Appl. 84 (2021), 203-223. (SCI二区期刊)
[14] H.F. Ding, C.P. Li, High-order algorithms for Riesz derivative and their applications (IV),Fract. Calc. Appl. Anal. 22 (2019), 1537-1560. (SCI三区Top期刊)
[13] H.F. Ding, C.P. Li, Numerical algorithms for the time-Caputo and space-Riesz fractional Bloch-Torrey equations, Numer. Meth. Part. D. E. 33 (2020), 1754-1794. (SCI三区期刊)
[12] H.F. Ding, A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation, Appl. Numer. Math. 135 (2019), 30-46. (SCI二区期刊)
[11] H.F. Ding, C.P. Li, A High-Order Algorithm for Time-Caputo-Tempered Partial Differential Equation with Riesz Derivatives in Two Spatial Dimensions, J. Sci. Comput, 80 (2019), 81-109. (SCI二区期刊)
[10] H.F. Ding, C.P. Li, High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: Construction and application (II), Appl. Math. Lett. 86 (2018), 208-214. (SCI二区期刊)
[9] H.F. Ding, C.P. Li, Q. Yi, A new second-order midpoint approximation formula for Riemann-Liouville derivative: algorithm and its application, IMA J. Appl. Math. 82 (2017), 909-944. (SCI三区期刊)
[8] H.F. Ding, C.P. Li, High-order numerical algorithms for Riesz derivatives via constructing new generating functions, J. Sci. Comput. 71 (2017), 759-784. (SCI二区期刊)
[7] H.F. Ding, C.P. Li, Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations, Fract. Calc. Appl. Anal. 20 (2017), 722-764. (SCI三区期刊)
[6] H.F. Ding, C.P. Li, High-order algorithms for Riesz derivative and their applications (V), Numer. Meth. Part. D. E. 33 (2017),1754-1794. (SCI三区期刊)
[5] H.F. Ding, C.P. Li, High-order algorithms for Riesz derivative and their applications (III), Fract. Calc. Appl. Anal. 19 (2016), 19-55. (SCI三区期刊)
[4] H.F. Ding, C.P. Li, High-order compact difference schemes for the modified anomalous subdiffusion equation, Numer. Meth. Part. D. E. 32 (2016), 213-242. (SCI三区期刊)
[3] H.F. Ding, General Padé approximation method for time-space fractional diffusion equation, J. Comput. Appl. Math. 299 (2016), 221-228. (SCI二区期刊)
[2] H.F. Ding, C.P. Li, Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (II), J. Comput. Phys. 293 (2015), 218-237. (SCI二区期刊)
[1] H.F. Ding, C.P. Li, Mixed spline function method for reaction-subdiffusion equations, J. Comput. Phys. 242 (2013), 103-123. (SCI二区期刊)
2. 教材专著
[2] H.F. Ding, C.P. Li, High-order finite difference methods for fractional partial differential equations, Handbook of Fractional Calculus with Applications. Volume 3: Numerical Methods, Chapter 3. Berlin, Boston: De Gruyter, 2019 (专著一章)
[1] 丁恒飞, 王丙参, 田俊红, Matlab与大学数学实验, 科学出版社, 2017
[3] 2022年,天水“最美科技工作者”
[2] 2021年,天水市“园丁奖”优秀教师
[1] 2017年,甘肃省普通高等学校青年教师成才奖
[5] 广西数学会常务理事
[4]《中国理论数学前沿》编委
[3] SCI期刊《Fractal and Fractional》特刊“Fractional Dynamics 2021”Guest Editor
[2] SCI期刊《Mathematics and Computers in Simulation》编委
[1] 美国《数学评论》(Mathematical Reviews) 评论员
联系方式:
Email:dinghf05@163.com
地址:广西桂林市雁山区雁中路1号必威一betway088
邮编:541006