王登银教授学术报告:群的自同构群的圈长问题
发布时间:2022-11-14 浏览次数:70
报告题目:群的自同构群的圈长问题
报告人:王登银 教授
报告时间:2022年11月17日下午15:00-16:00
报告地点:腾讯会议:331-451-135
摘要:Let G be a finitely generated free abelian group of rank n, and σ an automorphism of G. The set of distinct lengths of non-zero cycles in the cycle structure of σ is written as S(σ,G). It was proved by Klerk et al. that the structure of an arbitrary automorphism σ of G possesses at most finitely many distinct cycle lengths (Comm. Alg., 2018). A problem arises naturally: How many distinct cycle lengths possibly occur in the cycle structure of an automorphism σ of G. We prove that |S(σ,G)| ≤ 2m if n = 2m is even,or |S(σ,G)| ≤ 2m− 1 if n = 2m − 1 is odd, the automorphism σ for which |S(σ,G)| attains the upper bound is characterized definitely.
报告人:王登银,1998年毕业于中国科学技术大学,获理学博士学位。2002年于安徽大学破格晋升教授。现为中国矿业大学教授、博士生导师,基础数学研究所所长,数学学科博士点负责人。主要从事典型群、李型单群、代数群、李代数、代数图论等领域的相关研究,作为通讯作者发表被SCI检索的学术论文132篇。主持多项国家自然科学基金项目。