必威一betway088教师简介——孙林林
发布时间:2023-03-23 浏览次数:10
孙林林
博士、副教授、博士生导师(学术型)
微分几何与几何分析
《微分几何》、《黎曼面》、《复变函数与积分变换》、《高等数学》、《线性代数》
主持国家自然科学基金青年科学基金项,No. 11801420,狄拉克-调和映照及其相关问题,2019/01-2021/12,25万元,已结题。
1. Li, Jiayu; Sun, Linlin; Yang, Yunyan The boundary value problem for the mean field equation on a compact Riemann surface. Sci. China Math. 66 (2023), no. 1, 115–142.
2. Luo, Yong; Sun, Linlin; Yin, Jiabin An optimal pinching theorem of minimal Legendrian submanifolds in the unit sphere. Calc. Var. Partial Differential Equations 61 (2022), no. 5, Paper No. 192, 18 pp.
3. Sun, Linlin; Wang, Liuquan Brouwer degree for Kazdan-Warner equations on a connected finite graph. Adv. Math. 404 (2022), part B, Paper No. 108422, 29 pp.
4. Luo, Yong; Sun, Linlin Rigidity theorems for minimal Lagrangian surfaces with Legendrian capillary boundary. Adv. Math. 393 (2021), Paper No. 108124, 15 pp.
5. Qiu, Hongbing; Sun, Linlin Rigidity theorems of spacelike entire self-shrinking graphs in the pseudo-Euclidean space. J. Funct. Anal. 281 (2021), no. 9, Paper No. 109189, 24 pp.
6. Cui, Qing; Sun, Linlin A note on rigidity of Einstein four-manifolds with positive sectional curvature. Manuscripta Math. 165 (2021), no. 1-2, 269–282.
7. Chen, Qun; Sun, Linlin Extrinsic conformal lower bounds of eigenvalue for Dirac operator. Math. Z. 297 (2021), no. 3-4, 1659–1671.
8. Sun, Linlin; Zhu, Jingyong Global existence and convergence of a flow to Kazdan-Warner equation with non-negative prescribed function. Calc. Var. Partial Differential Equations 60 (2021), no. 1, Paper No. 42, 26 pp.
9. Sun, Jun; Sun, Linlin Sphere theorems for submanifolds in Kähler manifold. Math. Res. Lett. 27 (2020), no. 4, 1195–1236.
10. Luo, Yong; Sun, Linlin Complete Willmore Legendrian surfaces in S5 are minimal Legendrian surfaces. Ann. Global Anal. Geom. 58 (2020), no. 2, 177–189.
11. Sun, Jun; Sun, Linlin Sphere theorems for Lagrangian and Legendrian submanifolds. Calc. Var. Partial Differential Equations 59 (2020), no. 4, Paper No. 125, 29 pp.
12. Chen, Qun; Jost, Jürgen; Sun, Linlin; Zhu, Miaomiao Dirac-harmonic maps between Riemann surfaces. Asian J. Math. 23 (2019), no. 1, 107–125.
13. Cui, Qing; Sun, Linlin Optimal lower eigenvalue estimates for Hodge-Laplacian and applications. J. Differential Equations 266 (2019), no. 12, 8320–8343.
14. Cui, Qing; Sun, Linlin Some differentiable sphere theorems. Calc. Var. Partial Differential Equations 58 (2019), no. 2, Paper No. 43, 24 pp.
15. Chen, Qun; Jost, Jürgen; Sun, Linlin; Zhu, Miaomiao Estimates for solutions of Dirac equations and an application to a geometric elliptic-parabolic problem. J. Eur. Math. Soc. (JEMS) 21 (2019), no. 3, 665–707.
16. Sun, Linlin A note on the uncoupled Dirac-harmonic maps from Kähler spin manifolds to Kähler manifolds. Manuscripta Math. 155 (2018), no. 1-2, 197–208.
17. Cui, Qing; Sun, Linlin On the volume of locally conformally flat 4-dimensional closed hypersurface. Proc. Amer. Math. Soc. 146 (2018), no. 2, 759–771.
18. Li, Jiayu; Sun, Linlin A note on the nonexistence of quasi-harmonic spheres. Calc. Var. Partial Differential Equations 55 (2016), no. 6, Art. 151, 13 pp.
19. Chen, Qun; Jost, Jürgen; Sun, Linlin; Zhu, Miaomiao Dirac-geodesics and their heat flows. Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2615–2635.
20. Chen, Qun; Jost, Jürgen; Sun, Linlin Gradient estimates and Liouville theorems for Dirac-harmonic maps. J. Geom. Phys. 76 (2014), 66–78.