必威一betway088教师简介——张博儒
发布时间:2023-04-03 浏览次数:248
张博儒 博士
研究方向:有限群及其表示
讲授课程:高等数学,高等代数与解析几何
学术成果:
1. X. Guo and B. Zhang, Conditions on p-subgroups implying p-supersolvability, J. Algebra Appl., 16(10)(2017) 1750196(9 pages).
2. P. Bai, X. Guo and B. Zhang, The action on p-groups and p-supersolvability. Algebra Colloq., 24(4) (2017): 685–696.
3. B. Zhang and X. Guo, Finite p-groups with central automorphisms almost being inner automorphisms. J. Shanghai Univ. Nat. Sci., 23 (5)(2017), 714-721.
4.李彬彬,钟祥贵,张博儒,卢家宽.有限群的SS-半置换p-子群与p-幂零性[J].西南师范大学学报(自然科学版), 2022,47(10).
5. M. Li, J. Lu, B. Zhang(张博儒) and W. Meng, Some generalizations of Shao and Beltrán’s theorem, J. Algebra Appl., 22(3)(2023), 2350067.
6. J. Lu, X. Zhang, W. Meng and B. Zhang, Finite groups with some SB-subgroups. Comm. Algebra 51(1) (2023), 161–167.
7. B. Zhang, B. Li, and J. Lu, Criteria for p-supersolvability of a finite group, J. Algebra Appl., online, https://doi.org/10.1142/S0219498824500282.
8. J. Lu, Y. Wang, B. Zhang and W. Meng, On the number of subgroups of a finite group,Ricerche di Matematical, Online, https://doi.org/10.1007/s11587-022-00738-w.
9. W. Meng, J. Lu andB. Zhang, Finite simple groups the nilpotent residuals of all whose subgroups are TI-subgroups.Ricerche di Matematical, https://doi.org/.10.1007/s11587-023-00766-0.
10. J. Lu, M. Li, B. Zhangand W. Meng, Invariant TI-subgroups or subnormal subgroups and structure of finite group. Comm. Algebra, Online, https://doi.org/.10.1080/00927872.2023.2187220.